If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-4m-50=0
a = 1; b = -4; c = -50;
Δ = b2-4ac
Δ = -42-4·1·(-50)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{6}}{2*1}=\frac{4-6\sqrt{6}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{6}}{2*1}=\frac{4+6\sqrt{6}}{2} $
| (x-4)^2=81 | | -5x-4x=-6x+9 | | 5+y=45 | | 54-7x=20 | | 5+3(q-4)=-1+2(q+-3) | | x^2+81x-700=0 | | 8(1+5x)=5=13+5x | | 5+2x-5x=-10 | | 11x+3+13x+9=180 | | 6(x+5)+10=11x-5(x-3) | | 34+8b=-7-49b | | -(d-3)=2(3D+1 | | 10-2x-x=-11 | | x²+11x-12=0 | | 2(6x-12)=24(1/2x+1)-2 | | 2=z/7 | | 7x-10=5x=122 | | m-(-13)=-18 | | m+2+m=-5+m | | 2•3^x+3^x-2=57 | | 8-7x-x=8 | | 1/2(x+2)+1/10(x-10)=x+4 | | 8x-32=12x-24 | | |5x-4|=3x-8 | | 75+5x=3x+90 | | 10(x-1)=288 | | 14+6a–8=18 | | 2-2s=4/3s+13 | | 2n−35/5=5 | | 2-2s=4/3s+13 | | 6x+48=8x+8-2x+40 | | -31=5x+3x+1 |